
Citation: Gübelin, P.;

Correa-Cuadros, J.P.; Ávila-Thieme,

M.I.; Flores-Benner, G.; Duclos, M.;

Lima, M.; Jaksic, F.M. European

Rabbit Invasion in a Semi-Arid

Ecosystem of Chile: How Relevant Is

Its Role in Food Webs? Life 2023, 13,

916. https://doi.org/10.3390/

life13040916

Academic Editors: Linas Balčiauskas
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Abstract: The European rabbit (Oryctolagus cuniculus) is one of the main invasive species in Chile,
where it became naturalized ca. 150 years ago. Their high reproductive capacity, lack of specialist
predators, and great adaptability favored the settlement of rabbits in diverse mainland and island
ecosystems of the country. Recently, rabbits have become central players in semi-arid ecosystems,
such as those represented in Las Chinchillas National Reserve in north-central Chile. We undertook to
analyze the place and role of rabbits in the food web of that Reserve, based on a bibliographic review
and long-term annual data gathered from 1987 until 2022 (36 years). Results showed that the network
comprised 77 species, where 69% were primary producers (plants), 18% were mid-level consumers
(herbivores), and 13% were top-level consumers (predators). The most connected species in the food
web was the rabbit, which positively or negatively affected the species interacting with it. Predators
such as Galictis cuja, Geranoaetus polyosoma, Leopardus colocolo, and Puma concolor, and the scavenger
Vultur gryphus, could be negatively affected by an eventual decrease (natural or human-caused) in
the rabbit population of the Reserve. To the contrary, primary producers such as Oxalis perdicaria,
Plantago hispidula, Schizanthus parvulus, Senna cumminggi, and Tropaeolum azureum could be positively
affected by an increase in their biomass in response to a decrease in rabbits, favoring native rodents.
We consider that analyzing the rabbit-centered food web and its impacts on native interacting species
allows a better understanding of the relevance of invasive species in the local community, providing
conceptual tools for rabbit management.

Keywords: community feedbacks; conservation targets; invasive species; management practices;
network models; Oryctolagus cuniculus; predator-prey relationships; trophic interactions

1. Introduction

Human introduction of species has facilitated their expansion to regions beyond the
limits of their dispersal capacities [1]. Invasive species are one of the main causes of
biodiversity loss, affecting natural ecosystems, productive systems, and human health;
reducing their impacts is, therefore, one of conservation management’s main goals [2]. The
spread of such species into new areas involves three phases: (i) settlement, which occurs
after its arrival and ends with local extinction or naturalization, if the population generates
viable progeny; (ii) expansion, where the settled population increases its abundance and
occupies all favorable habitats; and (iii) persistence, where the species occupies all accessible
habitats [3], integrating with local communities and generating changes in ecosystem
processes [4].
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The introduction of alien species to Chile probably started in the pre-Columbian
period, contributing to the expansion of numerous plants, such as the shrub Acacia caven [5].
Later, under the Spanish colonization of the 16th century, commerce developed further,
allowing the introduction of new species into the Chilean ecosystems, such as the European
rabbit (Oryctolagus cuniculus) [6]. This rabbit is on the list of the world’s 100 worst invasive
alien species [7] and is among the seven most harmful invasive species present in Chile [8].
It was introduced as a caged animal in the 18th century for commercial purposes (pelt,
fur, and meat) [6]. Captive rabbits were released to the wild, and others escaped, causing
subsequent outbreaks in central Chile, and expanded geographically southward to Los
Lagos Region and northward to Atacama Region [9,10]. A separate escape/release occurred
in the Magallanes Region [6,11–13].

As a consequence of the preceding, rabbits damage agricultural, forestry, and livestock
operations, and also interfere with Chilean ecosystems’ structure, composition, and func-
tion [8]. For instance, rabbits modify the spatial distribution and decrease the survival rate
of native plant species, facilitate the dispersal of invasive plants thus driving native plants
to local extinction, generate soil erosion, and prevent the normal renewal and successional
processes of plant communities [6,13–19]. Rabbits in Chile use the open spaces within
shrublands, modifying the landscape to their needs [15,20–22]. They prefer to eat native
perennial herbs, removing unsheltered herbs and shrub seedlings, thus forestalling their
reproduction [14,16,23,24]. The rapid spread and broad distribution of rabbits is attributed
to their high population growth rate and reproductive capacity, with a gestation of only
30 days and the females’ ability to go into an estrous cycle while nursing their young [25].
Under wild conditions in Australia and Chile, females can have several litters a year with
up to seven offspring each [8,26], and this renders the rabbit a successful invasive species.

According to Jaksic et al. (1979, 1981), Jaksic and Soriguer (1981), Jaksic and Ostfeld
(1983), Jaksic and Yáñez (1983), and Jaksic (1986), rabbits in Chile are mostly preyed upon
by native carnivores such as foxes (Lycalopex culpaeus and L. griseus), cats (Puma concolor,
Leopardus guigna, and L. colocolo), skunks (Conepatus chinga), and grisons (Galictis cuja); and
by alien carnivores such as mink (Neovison vison) and domestic cats and dogs [11,20,27–30].
Additionally, they are hunted by kestrels, eagles, and hawks (Falco sparverius, Geranoaetus
melanoleucus, G. polyosoma, and Parabuteo unicinctus); and by owls (Athene cunicularia, Bubo
magellanicus, and Tyto alba). Still, this wealth of predators does not seem to be able to keep
rabbit populations at low abundance for any prolonged time [11,21,22].

Usually, specialist predators can regulate prey abundance preventing population in-
creases and inducing population cycles [31–33], but rabbits in Chile do not have specialized
predators [8,34,35]. Often, generalist predators cannot control rabbits at high densities
because their consumption rate curve rapidly saturates, and the population growth rate
of rabbits is greater than the predators’ growth rate [8,11,26,36,37]. Additionally, gen-
eralist predators easily switch between rabbits and abundant alternative prey, basically
rodents, contributing to relaxing the already weak predator control [29–31,38]. Indeed,
several authors point out that generalist predators can keep mammalian prey at low den-
sities only when the latter have already been affected by droughts, heavy snowfalls, or
diseases [34,35,39–44].

The first studies on rabbit predation in Chile (conducted in the 1970s) showed that
this species was a minority fraction in the diets of Athene cunicularia, Bubo magellanicus,
Geranoaetus melanoleucus, G. polyosoma, Lycalopex culpaeus, L. griseus, Parabuteo unicinctus,
and Tyto alba [45–50]. Such low predation upon rabbits was attributed to native predators
not having yet adapted to hunt for this recently introduced prey [21,22,37,51]. Indeed,
Jaksic (1986) hypothesized that those native predators were accustomed to the simple
escape behavior of their native prey (which dashed straight to the nearest shelter) and not
to the escape strategy of rabbits which included zigzag runs, leaps, and back-tracks [30].

Nevertheless, the European rabbit has now been coexisting and interacting for some
150 years with the Chilean fauna and flora, so it is expected that it should be already
embedded into the local ecosystems, building a network of interactions [52]. In fact,
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a sustained increase in the consumption of rabbits has been observed in recent times for
the native eagle Geranoaetus melanoleucus and the native fox Lycalopex culpaeus [53–56]. For
instance, L. culpaeus diet had 20% rabbit numerical frequency in 1976 [47], 37% in 1983 [53],
and 48% in 1984 [57], all three studies conducted in the same locality. The increased rabbit
intake paralleled the decrease in consumption of the native rodent Octodon degus and other
small mammals due to the loss of shrub cover, fragmentation, and deterioration of their
habitat [55]. Thus, rabbits may have currently become an important food resource for
those native predators, especially in anthropized landscapes and dryland areas affected by
drought [56], where populations of native small mammals have decreased.

On account of their high abundance and impacts, European rabbits should be con-
trolled to protect Chilean biodiversity. Still, this species is possibly deeply involved in
the local ecosystems, and any control effort could affect their communities, positively or
negatively, producing undesired impacts on native endangered species. Therefore, un-
derstanding the ecological feedbacks that an eventual control of the rabbit could elicit
in the ecosystem is key to designing its efficient management. In this way, it would be
possible to identify those species that should be monitored during rabbit management to
avoid potential undesired effects. Food-web models provide tools to better understand
and predict the complex effects of an invasive species and the impact of their eradication or
control in different ecosystems [58].

The knowledge of the rabbit food-web in Chile could provide insights on how an inva-
sive species interacts with predators, herbivorous competitors, and food plants. A drastic
decrease in rabbit abundance could elicit bottom-up impacts in predators with a restricted
dietary range. Then, such predators could face a reduction in their abundance or shift their
diet increasing predation pressure on native prey [59–61]. At the same time, as rabbits
preferentially consume several plant species, a decrease in rabbit abundance could also
produce top-down effects by herbivory release, with community and ecosystem effects de-
pending on the plants’ characteristics (e.g., native or invasive). Hence, to analyze the rabbit
food-web in a 36 yr monitored semi-arid ecosystem in Chile seems ideal to understand
their interaction network, feedbacks with sympatric species, and their impacts on them,
either positive or negative. We hypothesize that the European rabbit interacts directly and
indirectly with several native and non-native species within the local food web. We are
assessing whether rabbit persistence can positively impact predators by being a subsidy for
them and negatively affect the plants through their consumption. It follows that eradicating
the rabbit could negatively affect the persistence of predators, resulting in a reduction in
their trophic niche (especially those with narrow dietary breadth), and positively impact
the persistence of plants, because of their release from herbivory (especially on plants with
fewer consumers).

2. Materials and Methods
2.1. Study Site

Las Chinchillas National Reserve is 17 km North of Illapel city, Coquimbo Region,
north-central Chile (31◦50′87′′ S, 71◦10′53′′ W, Figure 1). It is a state-protected wilder-
ness area, the only that harbors a sizable population of the native and endangered rodent
Chinchilla lanigera [62,63]. The Reserve’s vegetation is typical of the semi-arid zone (Supple-
mentary Material Table S1). The climate is characterized by cool winters (3 to 5 ◦C) with
sporadic rains (150 mm) and dry summers with high temperatures (27 to 30 ◦C) [64].

The wildlife diversity of the Reserve comprises 80 vertebrate species, with birds being
the most abundant and amphibians the least, with only one species [63,65] (Supplementary
Material Table S2). Avian predators and scavengers, together with mammalian carnivores
present in the Reserve are listed in Table 1. Their most common mammalian prey are listed
in Table 2.



Life 2023, 13, 916 4 of 20
Life 2023, 13, x FOR PEER REVIEW 4 of 20 
 

 

 
Figure 1. Study site at Las Chinchillas National Reserve in north-central Chile. Dots are sampling 
units for faunal data. 

The wildlife diversity of the Reserve comprises 80 vertebrate species, with birds be-
ing the most abundant and amphibians the least, with only one species [63,65] (Supple-
mentary Material Table S2). Avian predators and scavengers, together with mammalian 
carnivores present in the Reserve are listed in Table 1. Their most common mammalian 
prey are listed in Table 2. 

Figure 1. Study site at Las Chinchillas National Reserve in north-central Chile. Dots are sampling
units for faunal data.



Life 2023, 13, 916 5 of 20

Table 1. Alphabetic list of main predators and scavengers present in Las Chinchillas National Reserve in north-central Chile, their activity pattern, diet composition,
and conservation status (using IUCN criteria).

Scientific Name Common Name Diel Activity Diet Composition Conservation Status References

Athene cunicularia Burrowing owl Diurnal,
Crepuscular

Mammals: A. bennetti, A. longipilis, A. olivaceus, Chinchilla lanigera, O. degus,
O. longicaudatus, O. cuniculus, S. cyanus, P. darwini, T. elegans.

Birds: Passerifomes. Reptiles: Liolaemus fuscus.
Arthropods: Insects and arachnids, Grammostola spathulate.

Least Concern [27,49,66–68]

Bubo magellanicus Magellanic horned owl Nocturnal
Mammals: A. bennetti, A. longipilis, A. olivaceus, O. degus, O. lunatus,

O. longicaudatus, O. cuniculus, P. darwini, S. cyanus, T. elegans.
Birds: Nothoprocta perdicaria, Passeriformes. Arthropods: Insects and arachnids.

Least Concern [27,45,68–70]

Galictis cuja Lesser grison Diurnal
Mammals: A. bennetti, A. longipilis, O. longicaudatus, O. cuniculus, P. darwini.

Reptiles: Philodryas chamissonis.
Birds: Passeriformes.

Least Concern [22,71,72]

Geranoaetus melanoleucus Black-chested eagle Diurnal

Mammals: A. bennetti, A. longipilis, A. olivaceus, O. degus, O. longicaudatus,
O. cuniculus, P. darwini, T. elegans. Birds: Colaptes pitius, Metriopelia melanoptera,
Nothoprocta perdicaria, Schelorchilus albicollis, Passeriformes. Reptiles: Philodryas

chamissonis, Plus insects.

Least Concern [54,73–76]

Geranoaetus polyosoma Variable hawk Diurnal Mammals: A. bennetti, A. olivaceus, O. degus, O. longicaudatus, P. darwini,
O. cuniculus. Reptiles: Liolaemus platei. Plus insects. Least Concern [48,68,77–79]

Leopardus colocolo Pampas cat Nocturnal O. cuniculus, P. darwini. Plus birds and reptiles. Near threatened [71,80,81]

Lycalopex culpaeus Culpeo fox Nocturnal,
Crepuscular

Mammals: A. bennetti, A. longipilis, A. olivaceus, O. degus, O. longicaudatus,
O. cuniculus, P. darwini, T. elegans., Reptiles: Philodryas chamissonis. Plants:

Porlieria chilensis. Plus artropods.
Least Concern [47,53,56,82–85]

Lycalopex griseus Chilla fox Continual
Mammals: A. bennetti, A. longipilis, A. olivaceus, O. lunatus, O. degus,

O. longicaudatus, O. cuniculus, P. darwini, T. elegans. Reptiles: Liolaemus nitidus.
Plus insects. Plants: Ephedra andina.

Least Concern [47,71,86,87]

Parabuteo unicinctus Harris’s hawk Diurnal
Mammals: A. bennetti, A. longipilis, A. olivaceus, O. longicaudatus, O. degus,

O. cuniculus, P. darwini, S. cyanus, T. elegans. Reptiles: Philodryas chamissonis,
Tachymenis chilensis, Pteroptochos megapodius.

Least Concern [27,47,55]

Puma concolor Puma Nocturnal,
Crepuscular Mammals: A. longipilis, A. olivaceus, L. culpaeus, O. longicaudatus, O. cuniculus. Least Concern [71,82,88]

Tyto alba Barn owl Nocturnal
Mammals: A. bennetti, A. longipilis, A. olivaceus, O. lunatus, O. degus,
O. longicaudatus, O. cuniculus, P. darwini, S. cyanus, T. elegans. Birds:

Passeriformes.
Least Concern [46,86,89–91]

Vultur gryphus Andean condor Diurnal Mammals: Galictis cuja, Lycalopex culpaeus, O. cuniculus, Puma concolor. Vulnerable [92,93]
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Table 2. Alphabetic list of main mammalian prey present in Las Chinchillas National Reserve in north-central Chile, their activity pattern, diet composition, and
conservation status (using IUCN criteria).

Scientific Name Common Name Diel Activity Diet Composition Conservation Status References

Abrocoma bennetti Bennett’s chinchilla rat Nocturnal
Plants: Acacia caven, Bridgesia incisifolia, Cordia decandra, Dioscorea

humifusa, Ephedra andina, Flourensia thurifera, Nassella chilensis, Vulpia
bromoides.

Least Concern [94]

Abrothrix longipilis Long-haired grass
mouse Continual Plants: Alstroemeria diluta, Alstromeria angustifolia, Proustia baccharoides.

Arthropods and moss. Least Concern [94,95]

Abrothrix olivaceus Olive grass mouse Continual Plants: Acacia caven, Vulpia bromoides. Plus insects and arachnids. Least Concern [96]

Chinchilla lanigera Long-tailed chinchilla Nocturnal Plants: Nassella chilensis, Adiantum chilense, Bridgesia incisifolia,
Heliotropium stenophyllum, Lobelia polyphylla. Endangered [97,98]

Octodon degus Degu Diurnal

Plants: Baccharis linearis, Colliguaja odorifera, Erodium moschatum,
Kageneckia oblonga, Lithraea caustica, Muehlenbeckia hastulata, Porlieria
chilensis, Proustia cinérea, Quillaja saponaria, Schinus latifolius, Trevoa

trinervis,
Vulpia bromoides.

Least Concern [16,94,99–102]

Octodon lunatus Moon-toothed degu Crepuscular,
Nocturnal Plants: Acacia caven, and insects. Near threatened [103]

Oligoryzomys
longicaudatus Long-tailed rice mouse Nocturnal Plants: Acacia caven, Chloraea sp., Erodium moschatum. Arthropods and

moss. Least Concern [89]

Oryctolagus cuniculus European rabbit Nocturnal

Plants: Lithraea caustica, Quillaja saponaria, Schinus latifolius, Porlieria
chilensis, Muehlenbeckia hastulata, Vulpia bromoides. Flourensia thurifera,
Maytenus boaria, Leucocoryne coquimbesis, Leucocoryne purpurea, Oxalis
perdicaria, Schizanthus parvulus, Plantago hispidula, Senna cumminggi,

Tropaeolum azureum.

Least Concern [33]

Phyllotis darwini Darwin’s leaf-eared
mouse Nocturnal Plants: Baccharis linearis, Erodium moschatum, Proustia cinerea. Least Concern [94,99]

Spalacopus cyanus Coruro Diurnal
Plants: Alstroemeria diluta, Alstromeria angustifolia,

Dioscorea humifusa, Leuchocoryne coquimbesis,
Leucocoryne purpurea, Sisyrinchium graminifolium.

Least Concern [94]

Thylamys elegans Elegant mouse opossum Nocturnal Plants: Erodium moschatum, Lycium chilensis. Plus insects and
arachnids. Least Concern [94,99]
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2.2. Bibliographic and Empirical Data

The bibliographic search to build the European rabbit food-web at the study site was
based on an exhaustive review of dissertations, theses, scientific articles, book chapters,
and technical reports published up to October 2022. The selection criteria required articles
to indicate verifiable taxonomy, study site, diel activity, and body size, of animal and
plant species present in the Reserve or nearby, and any interaction of rabbits with primary
producers, competitors, and predators. We finally considered 95 selected documents that
fulfilled the search requirements. We used a time series of faunal data and their diet from
the Reserve to confirm the bibliographic consumer-resource relationship in the Reserve
and build the corresponding food web, using the 36 years of monitoring fauna data of
small mammals ([104] for more details), 22 years for rabbits and predators, and predators’
diet data. The dietary composition of each predator was obtained by analyzing feces
(carnivores) and regurgitated pellets (raptors) collected across 17 km fixed transects each
season, from 1987 to 2022. The feces and pellets were taken to the laboratory where they
were gently disintegrated and analyzed, with prey consumed identified on the basis of
bone, feather, hair, or scale remains found. The minimum number of prey present in the
feces and pellets was estimated by the number of double or single anatomical elements of
the prey present, such as the skulls, teeth rows, or jaws of mammals; the skulls, pelvises, or
beaks of birds; the skulls, tails, or scales of reptiles; and the mandibles, stings, elytra, or
wings of insects.

2.3. Food Web Construction

The food network was built based on the rabbit-centered interactions, identifying
the predator species that consume local mammalian prey and the foods consumed by
the latter in the Reserve. Then, the network was completed with an estimation of the
rabbit as a potential competitor of native mammals for food within the Reserve. After this,
through information obtained by bibliographic review and empirical data collection, a
binary adjacency matrix ‘resource-consumer matrix’ was built with 0 s and 1 s. A value
of 1 indicates the presence of trophic interaction, and 0 is the absence of a trophic inter-
action. Adjacency matrices were used to model the food web and to analyze its topology.
Eight structural properties were calculated to analyze the food web topology. These were:
species richness (S = number of species in the network); number of trophic links (L); link
density (L/S); direct connectance (C = L/S2); proportion of basal, intermediate, and top
species; standardized generality (nº prey/[L/S], henceforth, generality); and vulnerability
(nº predators/[L/S], henceforth, vulnerability) [105]. These analyses were conducted using
Network 3D software [106]. The rabbit’s relative importance within the food web was
analyzed by ranking the number of links with which it was related, with the total number
of links, ongoing links (number of prey), and outgoing links (number of predators) being
thus calculated. In addition, the potential impact that rabbit management could have
on the food web was analyzed by simulating the most extreme management scenario,
i.e., rabbit eradication. Thus, the rabbit node was removed from the network, and then
the top-down and bottom-up ecological mechanisms triggered by rabbit-node extinction
were assessed. Trophic niche reduction was assessed as an index of the direct bottom-up
effects, comparing the number of ongoing links of each species before and after rabbit
eradication. Lastly, predation or herbivory release were assessed as an index of the direct
top-down effects, comparing the number of outgoing links of each species before and after
rabbit-node extinction. Frequency histograms were built to understand which ecologi-
cal mechanisms predominated in the process of simulated rabbit removal. Histograms
indicated the percentage of prey lost by predators and the percentage of prey released
from herbivory pressure owing to the extinction of the rabbit node. These analyses were
conducted in R-environment using the “igraph” and “network” packages [107].
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3. Results

The food web of Las Chinchillas National Reserve (Figure 2, Supplementary Material
Figure S1) was composed of 77 species, of which 69% were primary producers (plants), 18%
were mid-level consumers or herbivores, and 13% were top-level consumers or predators.
Of the 77 nodes, three corresponded to exotic species: European rabbits (Oryctolagus cunicu-
lus) and the annual herbs squirrel tail fescue (Vulpia bromoides) and common stork’s-bill
(Erodium cicutarium), representing 4% of the network. Additionally, 187 trophic interactions
were documented, with a connectance of 0.03. On average, the nodes had a higher pro-
portion of prey than of consumers, given that the values of generality and vulnerability
were 1.8 and 1.2, respectively. The most connected species in the food web was the rabbit,
followed by the native rodents degu (Octodon degus) and Bennett’s chinchilla rat (Abrocoma
bennetti), with a connectivity of 5.6, 4.3, and 3.5, respectively. This means that the rabbit
was the species that interacted with the greatest number of other species in the network
(27 species, 35% of the network), most of them being native (e.g., the vertebrate predators
Lycalopex culpaeus, Parabuteo unicinctus, and Tyto alba; the rodent herbivores Abrocoma ben-
netti, Abrothrix longipilis, and Octodon degus; the shrubs Flourensia thurifera, Lithraea caustica,
and Maytenus boaria). Similarly, the rabbit was the species with the highest vulnerability
(5.0) and generality (5.6) in the entire food web, indicating that, on average, the rabbit
had more predators and food plants than the remaining species in the network. Therefore,
it could be inferred that any intervention on rabbit abundance could either positively or
negatively affect several native species.
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Galictis cuja, Geranoaetus melanoleucus, Geranoaetus polyosoma, Leopardus colocolo, Lycalopex 
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prey species each (Figure 3A, Table 1). Therefore, the rabbit’s role as a prey or carrion 

Figure 2. The food web of Las Chinchillas National Reserve in north-central Chile. The primary
producers (plants), mid-level consumers (herbivores), and top-level consumers (predators) are shown
from the bottom upwards. Nodes represent species and lines represent links of trophic interaction.
Node size represents the number of total trophic interactions at which each node is associated. The
yellow node represents the rabbit; orange nodes represent the remaining species. This figure was
made using the Network3D program [106].

The European rabbit had 11 predator species (Athene cunicularia, Bubo magellanicus,
Galictis cuja, Geranoaetus melanoleucus, Geranoaetus polyosoma, Leopardus colocolo, Lycalopex
culpaeus, Lycalopex griseus, Puma concolor, Parabuteo unicinctus, and Tyto alba) and one
scavenger species (Vultur gryphus); all of them native and with a dietary range of four to
15 prey species each (Figure 3A, Table 1). Therefore, the rabbit’s role as a prey or carrion
resource is heterogeneous, and it is potentially more important for species with a lower
dietary range in the Reserve. Three of the twelve rabbit consumers were among the most
connected species in the network: the black-chested eagle (Geranoaetus melanoleucus), the
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burrowing owl (Athene cunicularia), and the Magellanic horned owl (Bubo magellanicus),
which had the highest dietary ranges in the Reserve, and values of 6.2, 5.8, and 5.8 in
generality, respectively. The remainder of the rabbit consumers had very low generality.
For instance, the condor (Vultur gryphus) and pampas cat (Leopardus colocolo) had the same
generality value of 1.65, and the puma (Puma concolor) had 2.1. Thus, these three predators
could be negatively affected if the rabbit were eradicated.

Rabbits consumed a total of 15 food plants (Table 2, Figure 3B), with one of them
being an exotic invasive herb, Vulpia bromoides, the rest being the native herbs Leucocoryne
purpurea, Leucocoryne coquimbensis, Oxalis perdicaria, Plantago hispidula, Schizanthus parvulus,
Senna cumminggi, and Tropaeolum azureum; and the native shrubs Flourensia thurifera, Lithraea
caustica, Maytenus boaria, Muehlenbeckia hastulata, Porlieria chilensis, Quillaja saponaria, and
Schinus latifolius. Then, if the rabbits are controlled or extirpated, this could relax their
herbivory pressure and increase the plant biomass in the Reserve.
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Figure 3. The relative importance of rabbit in the food web of Las Chinchillas National Reserve in
north-central Chile. (A). Dietary breadth of rabbit predators, expressed as number of prey categories
used. The diet composition of these predators is in Table 1. (B). Primary producers and the number
of species consuming these food plants. These plants (and their consumers) were: Vulpia bromoides
(A. bennetti, A. olivaceus, O. degus, and O. cuniculus); Porlieria chilensis (L. culpaeus, O. degus and O. cu-
niculus); Lithraea caustica, Muehlenbeckia hastulata, Quillaja saponaria, and Schinus latifolius (O. degus and
O. cuniculus); Leucocoryne purpurea and Leucocoryne coquimbensis (O. cuniculus and S. cyanus). Plants
consumed only by rabbits (not represented in this Figure) were Oxalis perdicaria, Plantago hispidula,
Schizanthus parvulus, Senna cumminggi, Tropaeolum azureum, Flourensia thurifera, and Maytenus boaria.
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Removal of the rabbit node from the food web caused nine plants of the network
to lose from 40 to 50% of their consumers (Figure 4A), which corresponded to the native
shrubs Flourensia thurifera, Lithraea caustica, Maytenus boaria, Muehlenbeckia hastulata, Porlieria
chilensis, Quillaja saponaria, and Schinus latifolius; and the native herbs Leucocoryne coquimbesis
and Leucocoryne purpurea. Other five species of herbs lost from 90 to 100% of their consumers:
Oxalis perdicaria, Schizanthus parvulus, Plantago hispidula, Senna cumminggi, and Tropaeolum
azureum. On the other hand, twelve native predator species lost from 7 to 25% of their
prey (Figure 4B), which corresponded to Geranoaetus melanoleucus (7%), Athene cunicularia
(7%), Bubo magellanicus (7%), Parabuteo unicinctus (8%), Lycalopex griseus (8%), Lycalopex
culpaeus (9%), Tyto alba (9%), Geranoaetus polyosoma (12%), Galictis cuja (14%), Vultur gryphus
(20%), Leopardus colocolo (25%), and Puma concolor (25%). These results show how rabbit
control or extirpation could trigger both top-down and bottom-up ecological feedbacks.
Still, predation release may be predominant, even though the outcome of these mechanisms
will depend on the strength of the interaction between the species involved, which is yet to
be assessed.
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Figure 4. Frequency histograms. (A) Number of plant species versus percentage of herbivores lost
after rabbit removal. (B) Number of predator species versus percentage of prey species lost after
rabbit removal.

4. Discussion

Invasive species are usually considered a threat to the conservation of diversity because
they alter the structure and functioning of the invaded ecosystems [1]. The European rabbit
has been coexisting and interacting with native and other invasive species in Chile for
ca. 150 years, building complex interaction networks as a plant consumer, a competitor
of other herbivores, as prey of predators, or as carrion for scavengers. Our results show
that rabbits interact with several native and non-native species in Las Chinchillas National
Reserve, allowing us to hypothesize the ecological feedback mechanisms that could operate
if rabbits were controlled or eradicated and how this could propagate and affect the local
food web [58,60,61].
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The topology analysis of the Reserve’s food web shows that the rabbit is the most
connected species therein and therefore is strongly embedded into the local community,
playing a key role as prey of 12 avian and mammalian predators and scavengers, competitor
of four rodents, and consumer of 14 species of herbs and shrubs. Thus, the rabbit major
importance in the food web of the Reserve lies in its positive or negative impact on species
with fewer interactions, which could be more vulnerable if rabbits were controlled or
extirpated [59]. For instance, predators or scavengers with a narrow dietary range, such
as Galictis cuja, Geranoaetus polyosoma, Leopardus colocolo, Puma concolor, and Vultur gryphus
could be more dependent on rabbit abundance, in comparison to that of native rodents. Of
these species, three are threatened: Leopardus colocolo is classified in the Near threatened
conservation category by both the IUCN and the Ministry of the Environment (MMA)
of Chile; Vultur gryphus, vulnerable according to IUCN and Near threatened according
to MMA; and Puma concolor, which although under the IUCN global evaluation is in the
Least Concern category, the national review by the MMA places it as Near threatened.
Additionally, herbs and shrubs consumed mostly by rabbits, such as Leucocoryne purpurea,
Leucocoryne coquimbensis, Lithraea caustica, Muehlenbeckia hastulata, Quillaja saponaria, and
Schinus latifolius could increase their biomass if they were released from rabbit herbivory
pressure by. Additionally, because rabbits may compete with the rodents Octodon degus
and Abrocoma bennetti (the second and third most connected species in the local food web),
after rabbit control they may gain increased interactions within the local food web. Thus,
perturbations such as droughts on these rodents could destabilize the network through
bottom-up effects [108].

Our results indicate two possible scenarios regarding how rabbit control could affect
predators with a low dietary range in the Reserve. First, predators and scavengers depen-
dent mainly on rabbits could decrease their local abundances due to lack of their main food
source [60,61]. Then, those with greater mobility or wider home ranges may be able to
move outside the Reserve to feed [61,109], but then become unprotected and in contact with
anthropogenic risks such as hunting, poisoning, electrocution, collision with power lines, or
waste consumption. The second scenario is that predators and scavengers may stay in the
Reserve and intensify predation on alternative prey such as native rodents [61]. This may
translate into more predation pressure on those populations, which currently suffer from an
intense megadrought in central Chile [110,111]. Likewise, there could be cascading effects
on scavengers that feed on rabbit predators (e.g., Andean condor) [93]. A case in point:
Both in Argentina [112] and the USA [113] the puma population decreased because their
main prey decreased in the first place. As a consequence, in Argentina, the puma expanded
its dietary range by incorporating alternative prey [112], and in the USA, it reduced its
individual body mass [113]. Although in Las Chinchillas National Reserve we have no
empirical data on the consumption of rabbits by puma, in Río Cipreses National Reserve
(O’Higgins Region of central Chile) it has been shown that rabbits constitute most of the
puma diet [82], thus suggesting that puma at the Reserve may display similar responses as
in Argentina or the USA.

Invasive species should be controlled because of their impacts on biodiversity and
ecosystem functioning [114]. In Chile, rabbits have a large impact by their consumption of
plant biomass, decreasing and fragmenting plant cover, affecting other species of fauna,
and generating erosion [6,9,12,13,115]. Thus, it seems convenient to control them, but
the positive impact that rabbits have as a food subsidy for native predators cannot be
ignored. Interactions between predators with narrow dietary range and rabbits in the
Reserve showed a strong relationship leading to predator extinction when the rabbit node
was eliminated. Predators such Galictis cuja, Geranoaetus polyosoma, Leopardus colocolo, and
Puma concolor, and the scavenger Vultur gryphus, lost from 12 to 25% of their prey categories.
Hence, if the rabbit were to be controlled in the Reserve, it should be important to monitor
predator and scavenger abundance trends by assessing their home range, their hunting for
alternate prey, and their foraying outside the protected area, eventually leaving it.
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Rabbits, in the absence or scarcity of predators, can become abundant enough to exert
top-down pressure on local plants [23,116]. Hence, their herbivory is one of the main
negative interactions that can hinder plant regeneration [16,117] and more so when their
densities are high [17,24,118]. In addition, rabbits facilitate the establishment of invasive
exotic plants, alter the habitat, and increase erosion [119–121]. Our results show that rabbit
control could positively affect those plants mostly consumed by them, by relaxing the
herbivory pressure and thus allowing plant regeneration [17,24,117,118,122]. Consequently,
the biomass of those plants could increase, triggering bottom-up benefits for both native
herbivores, predators, and scavengers. The benefits generated by rabbit control were exper-
imentally shown by Holmgren et al. (2000) in a central Chilean site: When rabbits were
excluded, native herbs increased strongly while the abundance of exotic herbs practically
did not change. Further, rabbit herbivory favored the growth of prostrate herbs, which
tended to be exotic, while rabbit exclusion favored erect herbs, which were native [123–125].
When rabbits were excluded, competition between native and exotic herbs decreased, and
the biomass of the natives increased [123]. In light of this, the effect that rabbit control
in the Reserve could have on the invasive Vulpia bromoides should be considered with
caution, because the latter could increase in abundance and competitively harm native
herb species. Indeed, studies of rabbit grazing in Europe indicate that they preferentially
consume V. bromoides, thus being able to exert a positive impact by controlling this invasive
species [126–129]. With regard to shrubs, rabbit control in the Reserve could increase the
survival of species such as Acacia caven, Baccharis linearis, Colliguaja odorifera, Peumus boldus,
Prosopis chilensis, and Quillaja saponaria [122,125,130]. In addition, it has been observed else-
where in Chile that in the absence of herbivores, the sexual reproductive pathway is faster
than the vegetative one for plant regrowth [131,132]. To witness, the eradication of rabbits
from Chañaral and Choros land-bridge islands in northern Chile allowed a fast and visible
recovery of the native vegetation [115,133]. Likewise, rabbits were eradicated from the
oceanic Santa Clara Island off the Chilean coast from Valparaiso Region [115,120,134–136]
and this allowed an important recovery of the native flora [121,136], highlighted by the
reappearance of four endemic species [134]. In short, herbivory seems to be a limiting
factor for Chilean plant species, and the exclusion of herbivores such as the rabbit may
facilitate their regeneration. A worldwide meta-analysis by Barbar et al. (2016) reported
that controlling rabbits may increase plant diversity almost immediately after removing
only 30–40% of a local rabbit population [59]. However, in Chile this process does not seem
to proceed that fast. For example, a long-term herbivore exclusion experiment with herbs
in the semi-arid region of Chile obtained results that became evident only 20 years after
its initiation [125]. Similarly, it took 34 years after an anti-herbivore exclusion was built in
a temperate region of Chile, for the tree cover of an abandoned pasture to recover [137].
We admit that the European rabbit management that could be carried out in the Reserve is
not the same as in an island eradication because of the larger area, more varied sources-
sinks, and a complex trophic web where the rabbit is strongly embedded. Therefore, the
importance of our results lies in recognizing the relevance of this invasive species in the
Reserve’s trophic network and its possible cascading effects on predators and plants. The
effects of adding physical barriers (plant protection, exclusion plots, and repellents) or
introducing biological control agents (diseases or falconry), should be monitored for key
species dependent on rabbits to evaluate the real impact of their removal.

Multispecies ecological network models provide wildlife managers with tools to
understand and predict the complex effects of species removal or control in both intact and
modified ecosystems [61]. Reduction or eradication of populations of invasive species can
often lead to unexpected flow-on consequences for community structure and ecosystem
processes if species interactions are not understood or accounted for by managers [138].
Our work highlights the idea that controlling a rabbit population in a semi-arid ecosystem is
not a trivial pursuit because the rabbit decrease effect could be propagated either negatively
or positively to other species in the network, causing diverse ecological feedbacks with
cascading effects. It is important to consider that our results do not indicate that the same
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level of interaction should be found verbatim in other places that the rabbit has invaded. In
fact, we suggest here to carry out similar studies of rabbit-centered food webs in different
ecosystems to pinpoint the generality of our findings. In short, the food web approach
provides information that is scientifically useful and complementary for the management
of invasive species, because it provides a community-based perspective on how the impacts
of management could spread to the species that are part of a given ecosystem. Finally, it
should be noted that it is not enough to gauge only the relative importance of the rabbit
(or any other mid-level consumer) in a given food web. Ideally, the absolute abundance
of all consumer species should be obtained to evaluate the total consumption of prey by
local predators, and estimate the dynamics of the food web through the use of bioenergetic
approximations such as the allometric trophic network model and weighted networks with
prey preference [139].
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Reserve, Table S2: Amphibians, arthropods, birds, mammals, and reptiles in Las Chinchillas National
Reserve, Table S3: Records of prey in Athene cunicularia diet between 1973 and 2004, in percentage of
biomass of their prey, based on pellet analyses made in different studies throughout time, Table S4:
Records of prey in the Bubo magellanicus diet between 1973 and 2001, in percentage of biomass of
their prey, based on pellet analyses made in different studies throughout time, Table S5: Records of
prey in the Geranoaetus melanoleucus diet between 1973 and 1989, in percentage of biomass of their
prey, based on pellet analyses made in different studies throughout time, Table S6: Records of prey in
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analyses made in different studies throughout time, Table S7: Records of prey in Lycalopex griseus
diet between 1973 and 2001, in percentage of biomass of their prey, based on feces analyses made
in different studies throughout time, Table S8: Records of prey in the Parabuteo unicinctus diet, in
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16. Fuentes, E.R.; Jaksić, F.M.; Simonetti, J.A. European Rabbits versus Native Rodents in Central Chile: Effects on Shrub Seedlings.
Oecologia 1983, 58, 411–414. [CrossRef]

17. Fuentes, E.; Hoffmann, A.; Poiani, A.; Alliende, M. Vegetation Change in Large Clearings: Patterns in the Chilean Matorral |
SpringerLink. Available online: https://link.springer.com/article/10.1007/BF01036739 (accessed on 18 January 2023).

18. Cuevas, J.G.; Van Leersum, G. Project “Conservation, Restoration, and Development of the Juan Fernández Islands, Chile”. Rev.
Chil. Hist. Nat. 2001, 74, 899–910. [CrossRef]

19. Fernández, A.; Sáiz, F. The European Rabbit (Oryctolagus cuniculus L.) as Seed Disperser of the Invasive Opium Poppy (Papaver
somniferum L.) in Robinson Crusoe Island, Chile. Mastozool. Neotrop. 2007, 14, 19–27.

20. Jaksic, F.M.; Fuentes, E.R.; Yañez, J.L. Spatial Distribution of the Old World Rabbit (Oryctolagus cuniculus) in Central Chile.
J. Mammal. 1979, 60, 207–209. [CrossRef]

21. Jaksic, F.M.; Fuentes, E.R. El Conejo Español: ¿Un Convidado de Piedra? In Ecología del Paisaje en Chile Central: Estudios sobre Sus
Espacios Montañosos; Ediciones Universidad Católica de Chile: Santiago, Chile, 1988; pp. 88–101.

22. Jaksic, F.M.; Fuentes, E.R. Ecology of a Successful Invader: The European Rabbit in Central Chile. In Biogeography of Mediterranean
Invasions; Cambridge University Press: Cambridge, UK, 1991; pp. 273–283, ISBN 978-0-521-36040-1.

23. Jaksic, F.M.; Fuentes, E.R. Why Are Native Herbs in the Chilean Matorral More Abundant Beneath Bushes: Microclimate or
Grazing? J. Ecol. 1980, 68, 665–669. [CrossRef]

24. Holmgren, M.; Avilés, R.; Sierralta, L.; Segura, A.M.; Fuentes, E.R. Why Have European Herbs so Successfully Invaded the
Chilean Matorral? Effects of Herbivory, Soil Nutrients, and Fire. J. Arid Environ. 2000, 44, 197–211. [CrossRef]

25. Gálvez-Bravo, L. Conejo Oryctolagus cuniculus (Linnaeus, 1758). In Enciclopedia Virtual de los Vertebrados Españoles; Salvador, A.,
Barja, I., Eds.; Museo Nacional de Ciencias Naturales: Madrid, Spain, 2017; pp. 1–25.

26. Myers, K.; Parer, I.; Wood, D.; Cooke, B.D. The Rabbit in Australia. In The European Rabbit. The History and Biology of a Successful
Colonizer; Thompson, K., King, C.M., Eds.; Oxford University Press Inc.: Oxford, UK, 1994; pp. 108–157.

27. Jaksic, F.M.; Greene, H.W.; Yáñez, J.L. The Guild Structure of a Community of Predatory Vertebrates in Central Chile. Oecologia
1981, 49, 21–28. [CrossRef]

28. Jaksic, F.M.; Soriguer, R.C. Predation Upon the European Rabbit (Oryctolagus cuniculus) in Mediterranean Habitats of Chile and
Spain: A Comparative Analysis. J. Anim. Ecol. 1981, 50, 269–281. [CrossRef]

http://doi.org/10.2307/2399726
http://doi.org/10.4067/S0717-71942008000200001
http://doi.org/10.1007/s10530-013-0561-5
http://doi.org/10.1007/s10530-022-02915-2
http://doi.org/10.1023/A:1008825802448
http://doi.org/10.1023/A:1020576709964
http://doi.org/10.1016/0006-3207(83)90097-6
http://doi.org/10.1007/BF00385244
https://link.springer.com/article/10.1007/BF01036739
http://doi.org/10.4067/S0716-078X2001000400016
http://doi.org/10.2307/1379775
http://doi.org/10.2307/2259427
http://doi.org/10.1006/jare.1999.0589
http://doi.org/10.1007/BF00376893
http://doi.org/10.2307/4044


Life 2023, 13, 916 15 of 20

29. Jaksic, F.; Ostfeld, R.S. Numerical and Behavioral Estimates of Predation upon Rabbits in Mediterranean-Type Shrublands:
A Paradoxical Case. Rev. Chil. Hist. Nat. 1983, 56, 39–49.

30. Jaksic, F.M. Predation upon Small Mammals in Shrublands and Grasslands of Southern South America: Ecological Correlates and
Presumable Consequences. Rev. Chil. Hist. Nat. 1986, 59, 209–221.

31. Newsome, A.E.; Parer, I.; Catling, P.C. Prolonged Prey Suppression by Carnivores—Predator-Removal Experiments. Oecologia
1989, 78, 458–467. [CrossRef]

32. Villafuerte, R. Riesgo de Predación y Estrategias Defensivas Del Conejo, Oryctolagus cuniculus, en El Parque Nacional de Doñana;
Universidad de Córdoba: Córdoba, Spain, 1994.

33. Villafuerte, R.; Delibes-Mateo, M. Conejo—Oryctolagus cuniculus (Linnaeus, 1758). In Atlas y Libro Rojo de los Mamíferos Terrestres de
España; Palomo, J., Gisbert, J., Blanco, J.C., Eds.; Dirección General para la 1631 Biodiversidad-SECEM-SECEMU: Madrid, Spain,
2007; pp. 487–491.

34. Hanski, I.; Henttonen, H.; Korpimäki, E.; Oksanen, L.; Turchin, P. Small-Rodent Dynamics and Predation. Ecology 2001, 82,
1505–1520. [CrossRef]

35. Sinclair, A.R.E. Mammal Population Regulation, Keystone Processes and Ecosystem Dynamics. Philos. Trans. R. Soc. Lond. Ser. B
Biol. Sci. 2003, 358, 1729–1740. [CrossRef]

36. Myers, K. Influence of Density on Fecundity, Growth Rates, and Mortality in the Wild Rabbit. CSIRO Wildl. Res. 1964, 9, 134–137.
[CrossRef]

37. Jaksic, F.; Fuentes, E.R.; Yáñez, J. Two Types of Adaptation of Vertebrate Predators to Their Prey. Arch. Biol. Med. Exp. 1979, 12,
143–152.

38. Trout, R.C.; Tittensor, A.M. Can Predators Regulate Wild Rabbit Oryctolagus cuniculus Population Density in England and Wales?
Mammal Rev. 1989, 19, 153–173. [CrossRef]

39. Hansson, L. Small Rodent Food, Feeding and Population Dynamics: A Comparison between Granivorous and Herbivorous
Species in Scandinavia. Oikos 1971, 22, 183–198. [CrossRef]

40. Hansson, L. Food as a Limiting Factor for Small Rodent Numbers. Oecologia 1979, 37, 297–314. [CrossRef]
41. Hansson, L. An Interpretation of Rodent Dynamics as Due to Trophic Interactions. Oikos 1987, 50, 308–318. [CrossRef]
42. Berryman, A.A. Principles of Population Dynamics and Their Application; Garland Science: New York, NY, USA, 1999;

ISBN 978-1-00-010185-0.
43. Hawkins, B.A.; Cornell, H.V. Theoretical Approaches to Biological Control; Cambridge University Press: Cambridge, UK, 2008;

ISBN 978-1-139-42928-3.
44. Calvete, C. Epidemiología de Enfermedad Hemorrágica (VHD) y Mixomatosis en El Conejo Silvestre (Oryctolagus cuniculus L. 1758) en El

Valle Medio Del Ebro: Modelización de VHD y Herramientas de Gestión; Universidad de Zaragoza: Zaragoza, Spain, 1999.
45. Yañez, J.; Rau, J.; Jaksic, F. Estudio comparativo de la alimentación de Bubo virginianus (Strigidae) en dos regiones de Chile. An.

Mus. Hist. Nat. Valparaíso 1978, 11, 97–104.
46. Jaksic, F.M.; Yáñez, J.L. The Diet of the Barn Owl in Central Chile and Its Relation to the Availability of Prey. Auk 1979, 96, 619–621.

[CrossRef]
47. Jaksic, F.M.; Schlatter, R.P.; Yáñez, J.L. Feeding Ecology of Central Chilean Foxes, Dusicyon culpaeus and Dusicyon griseus.

J. Mammal. 1980, 61, 254–260. [CrossRef]
48. Jaksic, F.M.; Yáñez, J.L.; Schlatter, R.P. Prey of the Harris’ Hawk in Central Chile. Auk 1980, 97, 196–198.
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