Línea 2: Aproximaciones de la bioingeniería a la protección del medio ambiente y las tecnologías sustentables.Line 2 (Bernardo González): Bioengineering approaches to environment protection and sustainable technologies.

DESCRIPCIÓN:

Los microorganismos son un componente biológico esencial en el funcionamiento de nuestro planeta. Aunque todavía hay un gran nivel de desconocimiento sobre tipos, características y procesos microbianos, lo que hoy si se sabe es que hay un tremendo potencial en los microorganismos conducente a mejorar la productividad, innovar y proteger el ambiente. Es en la aplicación efectiva de este potencial, entre otras iniciativas, donde el “Center of Applied Ecology and Sustainability” (CAPES) focaliza tanto la generación y transferencia de conocimiento original, como la formación de capital humano avanzado, con miras a permitir el desarrollo sustentable en Chile. Ejemplos de esto son las actividades de investigación y transferencia tecnológica que desarrollamos en áreas como el diseño de agroquímicos o agentes biocidas basados en microorganismos benéficos; la aplicación de estrategias de bio y fitorremediación para la limpieza de ambientes contaminados con derivados del petróleo, residuos mineros u otros contaminantes; o el monitoreo y control de la actividad de microorganismos que producen efectos indeseables como el drenaje ácido de minas, o la biocorrosión; además de estudiar la producción microbiana de materiales como celulosa y calcita. Para ello se utilizan aproximaciones tradicionales y modernas como la Biología Sintética, la (meta)Transcriptómica, la Minería de Datos y la Bioinformática, entre otras.


OBJETIVOS:

  • Uso de enfoques de última generación para el estudio de procesos microbianos de relevancia ambiental (secuenciación masiva; (meta)transcriptómica y (meta)genómica; herramientas computacionales de alta capacidad para minería de datos, modelamiento y predicción)
  • Contribución a la investigación fundamental en aspectos que, inexplicablemente, han recibido menos atención (mecanismos de promoción microbiana del crecimiento de plantas en condiciones normales y estresantes; respuestas moleculares y fisiológicas de plantas a microorganismos; mecanismos de control del crecimiento de biopelículas; bases para evaluar efectividad de estrategias de bio(fito)remediación, geomicrobiología de drenajes ácidos mineros, entre otros).
  • Integración de investigadores en Ingeniería y Computación para facilitar la resolución de problemas reales en donde estén involucrados procesos microbianos, a través de la adquisición, preprocesamiento, modelamiento y análisis de los datos generados en el laboratorio.
  • Difusión de la relevancia de las funciones microbianas en múltiples aspectos tecnológicos y ambientales, y los aspectos fundamentales y aplicados de las investigaciones realizadas a distintos actores de la sociedad.
  • Establecimiento de interacciones sinérgicas con las otras líneas CAPES que abordan problemas relevantes en Ecofisiología, Ecotoxicología, Manejo Ambiental, Ecología de Poblaciones, entre otras, que tengan un componente microbiano que considerar en su resolución o estudio.

PROYECCIONES:

  • Contribuir a la resolución efectiva de problemas ambientales en Chile.
  • Desarrollar productos agroquímicos que reduzcan el impacto ambiental de la agricultura, que permitan el uso de suelos no cultivables y/o que mejoren la productividad de la industria.
  • Generar conocimiento científico de alto impacto en las áreas fundamentales de Microbiología Ambiental y Biología Vegetal, y con aplicaciones concretas en actividades relevantes a nivel nacional, como la agricultura, minería, tratamiento de residuos, etc.
  • Incorporar modelamiento matemático y simulaciones computacionales para estudiar problemas ambientales como también ver el efecto que podrían tener las soluciones propuestas.
  • Formar nuevos científicos con capacidad para aplicar conocimientos básicos de la Microbiología, Biología Vegetal y Biotecnología Ambiental, entre otras, a la solución de problemas reales.
  • Establecer vínculos genuinos, entre distintos actores (Empresas, Gobierno, ONGs, entre otros), que permitan traducir eficientemente la investigación desarrollada en nuestros laboratorios en estrategias de desarrollo ambientalmente sustentables.

COLABORACIONES INTERNACIONALES:

  • Dietmar H. Pieper. Helmholtz-Zentrum für Infektionsforschung, HZI, Braunschweig, Alemania
  • Ramon Rosselló-Móra. Instituto Mediterráneo de Estudios Avanzados, IMEDEA, CSIC. Mallorca, España
  • José Eduardo González-Pastor. Centro de Astrobiología. INTA. Madrid, España
  • Fabricio Cassán. Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo. Departamento de Ciencias Naturales. Universidad Nacional de Río Cuarto. Córdoba. Argentina.

EQUIPO: 

Investigador Principal:

Bernardo González

Investigadores Asociados:

María José Poupin, Thomas Ledger, Gonzalo Ruz, Cedric Little, Francisca Blanco, Diego Pérez-Pantoja, Juan Pablo Pavissich y Felipe Aquea.

Postdoctorados:

Gastón López, Gustavo Rodríguez

Profesionales y Técnicos:

Luis Cid

Estudiantes de Postgrado:

Daniela Ruiz, Javier Cillero, Francisco Altimiras, Salvador Ramírez-Flandes y Sebastián Osores

Estudiantes de Pregrado:

María Ignacia Dellafiori, Arlan Tirado, Natalia Arancibia, Martín Céspedes.


PUBLICACIONES:

  • Di Genova A, Ruz GA, Sagot MF & Maass A (2018) Fast-SG: An alignment-free algorithm for hybrid assembly. GigaScience. Doi: 10.1093/gigascience/giy048. PDF
  • Duran C, Arce-Johnson P & Aquea F (2018) Methylboronic acid fertilization alleviates boron deficiency symptoms in Arabidopsis thaliana. Planta Doi: 10.1007/s00425-018-2903-0. PDF
  • Gacitúa MA, Munoz E & González B (2018) Bioelectrochemical sulphate reduction on batch reactors: Effect of inoculum-type and applied potential on sulphate consumption and pH. BIOELECTROCHEMISTRY 119: 26-32. Doi: 10.1016/j.bioelechem.2017.08.006. PDF
  • Henríquez PA & Ruz GA (2018) A non-iterative method for pruning hidden neurons in neural networks with random weights. Applied Soft Computing. Doi: 10.1016/j.asoc.2018.03.013. PDF
  • Mora-Ruiz MR, Cifuentes A, Font-Verdera F, Pérez-Fernández C, Farias ME, González B, Orfila A & Rosselló-Móra R (2018) Biogeographical patterns of bacterial and archaeal communities from distant hypersaline environments. Systematic and Applied Microbiology 41: 139-150. Doi: 10.1016/j.syapm.2017.10.006. PDF
  • Quintero-Galvis JF, Paleo-López R, Solano-Iguaran JJ, Poupin MJ, Ledger T, Gaitan-Espitia JD, Anto A, Travisano M & Nespolo RF (2018) Exploring the evolution of multicellularity in Saccharomyces cerevisiae under bacteria environment: An experimental phylogenetics approach. Ecology and Evolution 8: 4619-4630. Doi: 10.1002/ece3.3979. PDF
  • Zúñiga A, De la Fuente F, Federici F, Lionne C, Bonnet J, de Lorenzo V & González B (2018) An engineered device for indoleacetic acid production under quorum sensing signals enables Cupriavidus pinatubonensis JMP134 to stimulate plant growth. ACS Synthetic Biology. Doi: 10.1021/acssynbio.8b00002. PDF
  • Aquea F, Timmermann T & Herrera-Vásquez A (2017) Chemical inhibition of the histone acetyltransferase activity in Arabidopsis thaliana.Biochemical and Biophysical Research Communications. 483(1): 664-668. https://doi.org/10.1016/j.bbrc.2016.12.086. PDF
  • Donoso R, Leiva-Novoa P, Zúñiga A, Timmermann T, Recabarren-Gajardo G & González B (2017) Biochemical and genetic bases of indole-3-acetic acid (auxin phytohormone) degradation by the plantgrowth-promoting rhizobacterium Paraburkholderia phytofirmansAppl Environ Microbiol 83:e01991-16. https://doi.org/10.1128/AEM.01991-16. PDF
  • Filker S, Forster D, Weinisch L, Mora-Ruiz M, González B, Farías ME, Rosselló-Móra R & Stoeck T. (2017) Transition boundaries for protistan species turnover in hypersaline waters of different biogeographic regions. Environmental Microbiology. DOI: 10.1111/1462-2920.13805. PDF
  • Henríquez PA & Ruz GA (2017) Extreme learning machine with a deterministic assignment of hidden weights in two parallel layers. Neurocomputing226: 109-116. http://dx.doi.org/10.1016/j.neucom.2016.11.040. PDF
  • Menares F,  Carrasco MA,  González B, Fuentes I & Casanova M (2017) Phytostabilization ability of Baccharis linearis and its relation to properties of a tailings-derived technosol. Water Air Soil Pollut(2017) 228: 182. DOI 10.1007/s11270-017-3348-y. PDF.
  • Osores SJA, Lagos NA, San Martín V, Manríquez PA, Vargas CA, Torres R, Navarro JM, Poupin MJ, Saldías GS & Lardies MA (2017) Plasticity and inter-population variability in physiological and life-history traits of the mussel : A reciprocal transplant experiment, Journal of Experimental Marine Biology and Ecology. 490: 1-12, http://dx.doi.org/10.1016/j.jembe.2017.02.005. PDF
  • Rodríguez-Valdecantos G, Manzano M, Sánchez R, Urbina F, Hengst MB, Lardies MA, Ruz GA & González B (2017) Early successional patterns of bacterial communities in soil microcosms reveal changes in bacterial community composition and network architecture, depending on the successional condition. Applied Soil Ecology 120: 44-54. Doi: 10.1016/j.apsoil.2017.07.015. PDF
  • Timmermann T, Armijo G, Donoso R, Seguel A, Holuigue L & González B (2017) Paraburkholderia phytofirmans PsJN Protects Arabidopsis thaliana Against a Virulent Strain of Pseudomonas syringae Through the Activation of Induced Resistance. Molecular Plant-Microbe Interactions 30: 215-230. Doi: 10.1094/MPMI-09-16-0192-R. PDF
  • Zúñiga A, Donoso RA, Ruiz D, Ruz GA & González B (2017) Quorum-Sensing Systems in the Plant Growth-Promoting Bacterium Paraburkholderia phytofirmans PsJN Exhibit Cross-Regulation and Are Involved in Biofilm Formation. Molecular Plant-Microbe Interactions 30: 557-565. Doi: 10.1094/MPMI-01-17-0008-R. PDF
  • Aguilera V, Vargas CA, Lardies MA & Poupin MJ (2016) Adaptive variability to low-pH river discharges in Acartia tonsaand stress responses to high PCO2 Marine Ecology37: 215–226. PDF
  • Ledger T, Rojas S, Timmermann T, Pinedo I, Poupin MJ, Garrido T, Richter P, Tamayo J & Donoso R (2016) Volatile-Mediated Effects Predominate in Paraburkholderia phytofirmansGrowth Promotion and Salt Stress Tolerance of Arabidopsis thaliana.  Microbiol.7:1838. doi: 10.3389/fmicb.2016.01838. PDF.
  • Loyola R, Herrera D, Mas A, Chern Jan Wong D, Höll J, Cavallini E, Amato A, Azuma A, Ziegler T, Aquea F, Castellarin SD, Bogs J, Tornielli GB, Peña-Neira A, Czemmel S, Alcalde JA, Matus JT & Arce-Johnson P (2016) The photomorphogenic factors UV-B receptor 1, elongated hypocotyl 5, and hy5 homologue are part of the UV-B signalling pathway in grapevine and mediate flavonol accumulation in response to the environment. Journal of Experimental Botany67(18): 5429–5445. https://doi.org/10.1093/jxb/erw307. PDF
  • Poupin MJ, Greve M, Carmona V & Pinedo I (2016) A Complex Molecular Interplay of Auxin and Ethylene Signaling Pathways Is Involved in Arabidopsis Growth Promotion by Burkholderia phytofirmans PsJN. Front Plant Sci.12(7):492. PDF
  • Tapia JE, González B, Goulitquer S, Potin P & Correa JA (2016) Microbiota Influences Morphology and Reproduction of the Brown Alga Ectocarpus sp. Front Microbiol24 (7): 197. PDF
  • Goles E, Ruz GA (2015) Dynamics of neural networks over undirected graphs Neural Networks63: 156-16.  PDF
  • Mora-Ruiz M, Font-Verdera F, Díaz-Gil C, Urdiain M, Rodríguez-Valdecantos G, González B, Orfila A & Rosselló-Móra R (2015) Moderate halophilic bacteria colonizing the phylloplane of halophytes of the subfamily Salicornioideae (Amaranthaceae). Systematic and Applied Microbiology38 (6):406-416. PDF
  • Moraga F & Aquea F (2015) Composition of the SAGA complex in plants and its role in controlling gene expression in response to abiotic stresses. Front Plant Sci.6:865. PDF
  • Pérez-Pantoja D, Leiva-Novoa P, Donoso RA, Little C, Godoy M, Pieper DH & González B (2015) Hierarchy of carbon source utilization in soil bacteria: Hegemonic preference for benzoate in complex aromatic compound mixtures degraded by Cupriavidus pinatubonensis Appl Environ Microbiol. PDF
  • Pinedo I, Ledger T, Greve M & Poupin MJ (2015) Burkholderia phytofirmansPsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance. Front Plant Sci. 23(6):466. PDF
  • Viver T, Cifuentes A, Díaz S, Rodríguez-Valdecantos G, González B, Antón J, Rosselló-Móra R (2015) Diversity of extremely halophilic cultivable prokaryotes in Mediterranean, Atlantic and Pacific solar salterns: Evidence that unexplored sites constitute sources of cultivable novelty. Systematic and Applied Microbiology 38(4):266-275. PDF
  • Gacitúa MA, González B, Majone M & Aulenta F (2014) Boosting the electrocatalytic activity of Desulfovibrio paquesiibiocathodes with magnetite nanoparticles. Int J Hydrog Energ. doi: 10.1016/j.ijhydene.2014.07.057. PDF
  • Lardies MA, Arias MB, Poupin M & Bacigalupe L (2014). Heritability of hsp70 expression in the beetle Tenebrio molitor: Ontogenetic and environmental effects. Journal of Insect Physiology67:70-75 . PDF
  • Lardies MA, Arias MB, Poupin MJ, Manríquez P, Torres R, Vargas C, Navarro J & Lagos N. (2014).Differential response to ocean acidification in physiological traits of Concholepas concholepas. Journal of Sea Research90:127-134. PDF
  • Ruz GA, Timmermann T, Barrera J, Goles E (2014) Neutral space analysis for a Boolean network model of the fission yeast cell cycle network. Biological Research47(1):64. doi:10.1186/0717-6287-47-64. PDF

  1. Team

    – Principal Investigator:

    Bernardo González Ojeda

    – Associate researchers:

    María Josefina Poupin Swinburn

    Thomas Ledger Hermosilla

    Gonzalo Ruz Heredia

    Cedric Little Orellana

    Juan Rivadeneira Hurtado

    – Postdoctoral associates:

  • Ana Zúñiga: “Synthetic bacterial consortiums : a strategy of synthetic biology to optimize the plant -bacteria association by proper selection and regulation of gene expression”.
  • Gastón Lopez: «Plant Microbiology»
  • Raúl Donoso: “Role of sigma factors extracitoplasmática function of growth promoting bacteria Burkholderia phytofirmans PsJN in the rhizosphere and endophytic colonization of plants”.
  • Verónica Morgante: «Microbian indexes for soil health»

    – Professionals and technicians:

    Daniela Ruiz Salazar

    Rossana Carrasco Tobar

    Macarena Greve Muñoz

    Sandy Rojas Arce

    – Graduate students

Doctorate:

  • Alex Di Genova
  • Daniela Ruiz

  • Francisco Altimiras

  • Gustavo Rodríguez

  • Katherine Rojas

  • Salvador Ramírez-Flandes

  • Sebastián Osores

  • Tania Timmermann

Master:

  • Alexa Siebert
  • Claudia Clavero

  • Cristian Pugh

  • Ignacio Gómez

– International collaborators:

– Dietmar H. Pieper. Helmholtz-Zentrum für Infektionsforschung, HZI, Braunschweig, Alemania

– Ramon Rosselló-Móra. Instituto Mediterráneo de Estudios Avanzados, IMEDEA, CSIC. Mallorca, España

– José Eduardo González-Pastor. Centro de Astrobiología. INTA. Madrid, España

Research:

Microorganisms are an essential biological component in the functioning of our planet. Although there is still a great deal of ignorance about types, characteristics and microbial processes, which if known today is that there is tremendous potential in microorganisms conducive to improving productivity, innovation and protect the environment. It is in the effective implementation of this potential, among other initiatives, where the «Center of Applied Ecology and Sustainability» (CAPES) focuses on both the generation and transfer of original knowledge, the formation of advanced human capital in order to allow development sustainable in Chile. Examples of this are the research and develop technology transfer in areas such as design of agrochemicals or biocides based on beneficial microorganisms; the application of bio strategies and phytoremediation to clean petroleum-contaminated environments, mining waste or other pollutants; or monitoring and control of the activity of microorganisms that produce undesirable effects such as acid mine drainage, biocorrosion or biofouling; in addition to studying the microbial production of materials such as cellulose and calcite. For this traditional and modern approaches such as synthetic biology, the (meta) transcriptomics, data mining and bioinformatics, among others are used.

Objectives:

1) Using last generation approaches to the study of microbial processes of environmental relevance (massive sequencing, (meta) transcriptomics and (meta) genomics, computational tools of high capacity data mining, modeling and prediction).

2) Contribute to fundamental research in areas that have inexplicably received less attention (microbial mechanisms promoting plant growth under normal and stressful conditions; molecular and physiological responses of plants to microorganisms, mechanisms of biofilm growth monitoring; bases that evaluate effectiveness of strategies in bio (phyto) remediation geomicrobiology acid mine drainage, etc.).

3) Integrate Engineering and Computer Science researchers to facilitate the resolution of real problems where they are involved microbial processes through the acquisition, preprocessing, modeling and analysis of the data generated in the laboratory.

4) Dissemination of the importance of microbial functions in multiple technological and environmental aspects, and fundamental and applied research conducted at different actors in society issues.

5) Establishment of synergistic interactions with other CAPES lines that address relevant problems in ecophysiology, Ecotoxicology, Environmental Management, Ecology of Populations, among others, which have a microbial component to consider in its resolution or study.

Actual research lines:

1) Study the microbial molecular mechanisms involved inplant growth promotion.

2) Characterize the molecular and physiological responses involved in plant responses to microorganisms in normal growth conditions or stress.

3) Study the factors involved in chemical signaling between plants and microorganisms.

4) Evaluate bio strategies involved in (phyto) remediation of petroleum contaminated sites, chloroaromatic pesticides or metals.

5) Evaluate microbial component in the potential for acid mine drainage.

6) Develop algorithms to construct gene regulatory networks using gene expression data.

7) Study robustness of biological networks through neutral space.

8) Study microbial strategies involved in the production of cellulose and precipitation of calcite, regulation and metabolic requirements.

Projections and challenges:

1) Design of genetic circuits using synthetic biology tools for the development of growth-promoting agents, screening tools, and / or academic teaching of molecular genetic resources.

2) Contribute to the effective resolution of environmental problems in Chile.

3) Develop agricultural chemicals that reduce the environmental impact of agriculture, which does not allow the use of arable land and / or improve the productivity of the industry.

4) Generate high impact scientific knowledge in the fundamental areas of Environmental Microbiology and Plant Biology, and with specific applications in relevant activities at the national level, such as agriculture, mining, waste treatment, etc.

5) Incorporate mathematical modeling and computer simulations to study environmental problems as well as see the effect they could have proposed solutions.

6) Train new scientists with ability to apply basic knowledge of Microbiology, Plant Biology and Environmental Biotechnology, among others, to solve real problems.

7) Establish genuine links between different actors (companies, government, NGOs, etc.) that allow efficiently translate research carried out in our laboratories in environmentally sustainable development strategies.

Publications:

2014 

1) Gacitúa MA, González B, Majone M & Aulenta F (2014) Boosting the electrocatalytic activity of Desulfovibrio paquesii biocathodes with magnetite nanoparticles. Int J Hydrog Energ. doi: 10.1016/j.ijhydene.2014.07.057. PDF: Gazitua et al. 2014

2) Lardies MA, Arias MB, Poupin M & Bacigalupe L (2014). Heritability of hsp70 expression in the beetle Tenebrio molitor: Ontogenetic and environmental effects. Journal of Insect Physiology 67:70-75 . PDF: Lardies et al. 2014

3) Lardies MA, Arias MB, Poupin MJ, Manríquez P, Torres R, Vargas C, Navarro J & Lagos N. (2014).Differential response to ocean acidification in physiological traits of Concholepas concholepas. Journal of Sea Research 90:127-134. PDF: Lardies et al. 2014b

4) Ruz GA, Timmermann T, Barrera J, Goles E (2014) Neutral space analysis for a Boolean network model of the fission yeast cell cycle network. Biological Research 47(1):64. doi:10.1186/0717-6287-47-64. PDF: Ruz et al. 2014

2015

1) Goles E, Ruz GA (2015) Dynamics of neural networks over undirected graphs Neural Networks 63: 156-16.  PDF: Goles& Ruz_2015

2) Mora-Ruiz M, Font-Verdera F, Díaz-Gil C, Urdiain M, Rodríguez-Valdecantos G, González B, Orfila A & Rosselló-Móra R (2015) Moderate halophilic bacteria colonizing the phylloplane of halophytes of the subfamily Salicornioideae (Amaranthaceae). Systematic and Applied Microbiology 38 (6):406-416. PDF

3) Moraga F & Aquea F (2015) Composition of the SAGA complex in plants and its role in controlling gene expression in response to abiotic stresses. Front Plant Sci. 6:865. PDF

4) Pérez-Pantoja D, Leiva-Novoa P, Donoso RA, Little C, Godoy M, Pieper DH & González B (2015) Hierarchy of carbon source utilization in soil bacteria: Hegemonic preference for benzoate in complex aromatic compound mixtures degraded by Cupriavidus pinatubonensis Appl Environ Microbiol.  PDF: Pérez-Pantoja et al. 2015

5) Pinedo I, Ledger T, Greve M & Poupin MJ (2015) Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance. Front Plant Sci. 23(6):466. PDF

6) Viver T, Cifuentes A, Díaz S, Rodríguez-Valdecantos G, González B, Antón J, Rosselló-Móra R (2015) Diversity of extremely halophilic cultivable prokaryotes in Mediterranean, Atlantic and Pacific solar salterns: Evidence that unexplored sites constitute sources of cultivable novelty. Systematic and Applied Microbiology 38(4):266-275. PDF: Viver et al. 2015

2016

1) Aguilera V, Vargas CA, Lardies MA & Poupin MJ (2016) Adaptive variability to low-pH river discharges in Acartia tonsa and stress responses to high PCO2 conditions. Marine Ecology 37: 215–226. PDF

2) Ledger T, Rojas S, Timmermann T, Pinedo I, Poupin MJ, Garrido T, Richter P, Tamayo J & Donoso R (2016) Volatile-Mediated Effects Predominate in Paraburkholderia phytofirmans Growth Promotion and Salt Stress Tolerance of Arabidopsis thaliana. Front. Microbiol. 7:1838. doi: 10.3389/fmicb.2016.01838. PDF.

3) Loyola R, Herrera D, Mas A, Chern Jan Wong D, Höll J, Cavallini E, Amato A, Azuma A, Ziegler T, Aquea F, Castellarin SD, Bogs J, Tornielli GB, Peña-Neira A, Czemmel S, Alcalde JA, Matus JT & Arce-Johnson P (2016) The photomorphogenic factors UV-B receptor 1, elongated hypocotyl 5, and hy5 homologue are part of the UV-B signalling pathway in grapevine and mediate flavonol accumulation in response to the environment. Journal of Experimental Botany 67(18): 5429–5445. https://doi.org/10.1093/jxb/erw307. PDF

4) Poupin MJ, Greve M, Carmona V & Pinedo I (2016) A Complex Molecular Interplay of Auxin and Ethylene Signaling Pathways Is Involved in Arabidopsis Growth Promotion by Burkholderia phytofirmans PsJN. Front Plant Sci. 12(7):492. PDF

5) Tapia JE, González B, Goulitquer S, Potin P & Correa JA (2016) Microbiota Influences Morphology and Reproduction of the Brown Alga Ectocarpus sp. Front Microbiol 24 (7): 197. PDF

2017

1) Aquea F, Timmermann T & Herrera-Vásquez A (2017) Chemical inhibition of the histone acetyltransferase activity in Arabidopsis thaliana. Biochemical and Biophysical Research Communications. 483(1): 664-668. https://doi.org/10.1016/j.bbrc.2016.12.086. PDF

2) Donoso R, Leiva-Novoa P, Zúñiga A, Timmermann T, Recabarren-Gajardo G & González B (2017) Biochemical and genetic bases of indole-3-acetic acid (auxin phytohormone) degradation by the plantgrowth-promoting rhizobacterium Paraburkholderia phytofirmans PsJN. Appl Environ Microbiol 83:e01991-16. https://doi.org/10.1128/AEM.01991-16. PDF

3) Filker S, Forster D, Weinisch L, Mora-Ruiz M, González B, Farías ME, Rosselló-Móra R & Stoeck T. (2017 in press) Transition boundaries for protistan species turnover in hypersaline waters of different biogeographic regions. Environmental Microbiology. DOI: 10.1111/1462-2920.13805. PDF

4) Henríquez PA & Ruz GA (2017) Extreme learning machine with a deterministic assignment of hidden weights in two parallel layers. Neurocomputing 226: 109-116. http://dx.doi.org/10.1016/j.neucom.2016.11.040. PDF

5) Menares F,  Carrasco MA,  González B, Fuentes I & Casanova M (2017) Phytostabilization ability of Baccharis linearis and its relation to properties of a tailings-derived technosol. Water Air Soil Pollut (2017) 228: 182. DOI 10.1007/s11270-017-3348-y. PDF.

6) Osores SJA, Lagos NA, San Martín V, Manríquez PA, Vargas CA, Torres R, Navarro JM, Poupin MJ, Saldías GS & Lardies MA (2017) Plasticity and inter-population variability in physiological and life-history traits of the mussel : A reciprocal transplant experiment, Journal of Experimental Marine Biology and Ecology. 490: 1-12, http://dx.doi.org/10.1016/j.jembe.2017.02.005. PDF